cow.kr An introduction to ordinary differential equations James C.Robinson 解法(솔루션) > cow8 | cow.kr report

An introduction to ordinary differential equations James C.Robinson 解法(솔루션) > cow8

본문 바로가기

cow8


[[ 이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다. ]


An introduction to ordinary differential equations James C.Robinson 解法…

페이지 정보

작성일 19-09-16 08:11

본문




Download : Robinson[1].J.C.Solution.manual.for.An.introduction.to.ordinary.differential.equations.pdf




순서
James C.Robinson저



An introduction to ordinary differential equations 解法(솔루션)

2004년판

Download : Robinson[1].J.C.Solution.manual.for.An.introduction.to.ordinary.differential.equations.pdf( 30 )


James,C,Robinson,An,introduction,to,ordinary,differential,equations,기타,솔루션
설명


An introduction to ordinary differential equations 솔루션James C.Robinson저2004년판 , An introduction to ordinary differential equations James C.Robinson 솔루션기타솔루션 , James C Robinson An introduction to ordinary differential equations

솔루션/기타





An introduction to ordinary differential equations James C.Robinson 解法(솔루션)




An Introduction to Ordinary Di?erential Equations Exercises and Solutions
James C. Robinson

1 Radioactive decay and carbon dating

Exercise 1.1 Radioactive isotopes decay at random, with a ?xed probability of decay per unit time. Over a time interval ?t, suppose that the probability of any one isotope decaying is k?t. If there are N isotopes, how many will decay on average over a time interval ?t? Deduce that N (t + ?t) ? N (t) ? ?N k?t, and hence that dN/dt = ?kN is an appropriate model for radioactive decay. Over a time interval ?t, N k?t isotopes will decay. We then have N (t + ?t) ? N (t) = ?N k?t. Dividing by ?t gives N (t + ?t) ? N (t) = ?N k, ?t and letting ?t → 0 we obtain, us…(투비컨티뉴드 )



다.
REPORT 74(sv75)



해당자료의 저작권은 각 업로더에게 있습니다.

cow.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
[[ 이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다 ]]

[저작권이나 명예훼손 또는 권리를 침해했다면 이메일 admin@hong.kr 로 연락주시면 확인후 바로 처리해 드리겠습니다.]
If you have violated copyright, defamation, of rights, please contact us by email at [ admin@hong.kr ] and we will take care of it immediately after confirmation.
Copyright © cow.kr All rights reserved.